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■ This paper presents a theoretical investigation of the 
behavior of reinforced concrete ledge beams that 
used finite element theory to model the nonlinear 
behavior of reinforced concrete at all loading stages.

■ The three main parameters were the effective thick-
ness of the outer part of the web near the concen-
trated load where vertical hangers can effectively 
be placed, the contribution of diagonal bars to the 
hanging capacity of ledge beams, and the effect 
of the load eccentricity on the hanging capacity of 
ledge beams.

■ The punching shear behavior of ledge beams was 
also analyzed using a plasticity-based nonlinear finite 
element model.

Inverted tee and L ledge beams are widely used in bridge 
design. They can support bridge girders at a lower 
elevation than compression-chord-loaded beams can 

while maintaining a suitable clearance beneath the bridge. In 
addition, they are used in bridges crossing wide roads or water 
channels (Fig. 1). Ledge beams are also used in precast con-
crete structures to support precast concrete double-tee beams. 
In these beams, the ledge is located at the bottom chord where 
the eccentric concentrated loads are applied and need to be 
transferred to the compression chord, which in turn produces 
a tension stress field in the web of these beams.1–3

There are several modes of failure for ledge beams. Ledge 
beams may fail globally due to global flexure, shear, or 
torsion. Ledge beams may also fail due to the following 
local effects (Fig. 2):4,5

• yielding of tension tie reinforcement

• crushing of the compression strut under the concentrat-
ed load

• separation between the web and the ledge due to hanger 
reinforcement yielding

• punching shear failure under the concentrated load

• shear friction failure at the shear plane between the 
ledge and the web

• bearing failure under the supporting plate
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Design methods to avoid most of these modes of failure of 
ledge beams are well covered in the literature and in various 
codes, specifications, and guidelines. However, there are 
many differences and contradictions among the provisions 

found in various publications for two of these modes: sep-
aration between the web and the ledge at the web-to-ledge 
junction due to hanger reinforcement yielding and punching 
shear failure in the ledge under the concentrated loads. This 

Figure 1. A ledge in a bridge in Alkhalafawy-Shoubra, Egypt. Diagram reproduced with permission from Fernandez-Gomez 
(2012).

Figure 2. Modes of failure of ledge beams. Note: P = vertical concentrated load.
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paper is focused on these two modes of failure and the possi-
ble solutions for them.

Background

Strut-and-tie modeling of ledge beams

Codes, design guidelines, and specifications include sim-
plified equations to directly design ledge beams for all the 
previously mentioned modes of failure; some of these equa-
tions are theoretical, and others are empirical. Strut-and-tie 
modeling can also be used to design ledge beams. To properly 
model ledge beams, a three-dimensional (3-D) strut-and-tie 
model is required (Fig. 3).1 As in ledge beams, the forces flow 
in two directions as the compression-chord-loaded beams in 
addition to the compressive forces in the inclined struts and 
the tension forces in the horizontal ties in the ledge under 
the concentrated loads that flow in the third direction. For 
simplicity, this 3-D strut-and-tie model can be subdivided 
into two two-dimensional (2-D) models, provided that the 
interaction between the two models is considered. The two 
2-D models are a longitudinal model that consists of an 
upper strut, bottom tie, vertical ties, and diagonal struts and a 
cross-sectional model that consists of two horizontal ties, two 
vertical ties, and two inclined struts.

Comparison of selected design 
provisions

The provisions related to the design of hanger reinforcement 
of ledge beams and the estimation of punching shear capac-

ity of ledges in the Egyptian Code of Practice for Planning, 
Design, and Construction of Bridges and Elevated Intersections 
(ECP 207-2015),6 the American Association of State Highway 
and Transportation Officials’ AASHTO LRFD Bridge Design 
Specifications, 9th edition,4 and the PCI Design Handbook: 
Precast and Prestressed Concrete, eighth edition,7 are not 
identical. To illustrate the differences and similarities in these 
three publications, relevant provisions from each were applied 
to example 5.6.1 from the PCI Design Handbook. Table 1 
presents the results for the required hanger reinforcement and 
the punching shear capacity. The results show that there are 
differences among the calculated total transverse reinforcement 
areas required by those three references. The total transverse 
reinforcement area calculated according to the AASHTO LRFD 
specifications is the largest among the three publications, which 
can be attributed to the presence of a serviceability check in the 
AASHTO LRFD specifications. But this check does not exist in 
the other two references. Concerning punching shear capacity, 
the results show that there are differences among the calculated 
demand/capacity ratios according to the three documents. From 
this example, there are differences and contradictions among 
the results of the three documents. Therefore, there is a need to 
investigate the conservativeness and accuracy of the equations 
proposed in these three documents to estimate the hanging 
capacity of ledge beams and the punching shear capacity of 
ledges.

Objectives and scope

Motivated by the differences and the contradictions among the 
selected design documents, there were two main objectives 

Figure 3. Three-dimensional strut-and-tie model of a ledge beam. Source: Adapted with permission from Fernandez-Gomez 
(2012).
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for the study reported in this paper. The first objective was 
to investigate the effective thickness of the outer part of the 
web near the concentrated load where vertical hangers can 
effectively be placed (inner stirrup leg distance from the outer 
face of the web X

i
), the contribution of diagonal bars to the 

hanging capacity of ledge beams, and the effect of load ec-
centricity on the hanging capacity of ledge beams. The second 
objective was to investigate the capability of a plasticity-based 
nonlinear finite element model to estimate punching shear 
failure in ledges. In addition, the accuracy and the conserva-
tiveness of the equations from the ECP 207-2015, AASHTO 
LRFD specifications, and PCI Design Handbook that are 
used to estimate the hanging capacity of ledge beams and the 
punching shear capacity of ledges were evaluated.

In this paper, the basic assumptions adopted in analysis of the 
studied ledge beams are described, including cross-sectional 
dimensions, reinforcement, and material properties, present 
details of the development of a comprehensive finite element 
model (FEM) to perform nonlinear analysis for reinforced 
concrete ledge beams and validate the developed FEM by 
modeling three reinforced concrete ledge beams that were 
experimentally tested in the literature. The hanging capacities 
estimated by the plasticity-based nonlinear FEM are then used 
to investigate the effects of using inner stirrup legs or diagonal 
bars and the effect of the load eccentricity on hanging capacity 
of ledge beams. Finally, the punching shear capacities estimat-
ed by the plasticity-based nonlinear FEM are compared with 
experimental results collected from the literature to investigate 
the accuracy of the results. The estimated results from the FEM 
are used as a reference for the hanging capacity investigations 
because there is a lack of experimental data. Experimental data 
are used as a reference for the punching shear investigations.

Basic assumptions

In this study, nonlinear finite element software was used to 
analyze 18 theoretical reinforced concrete ledge beams. All 
these beams are L-shaped ledge beams with a clear span of 

13 m (43 ft). The beams support four girders spaced at 3.5 m 
(11 ft), and the reaction of each girder is transferred to the 
ledge through a bearing pad with a width of 0.5 m (1.6 ft). 
The beams are hinged-roller, simply supported elements with 
two supporting plates 0.5 m in width, and they are supported 
laterally with four anchors to restrain the rotation of the beams. 
The beams are designed according to ECP-207-2015, taking 
into consideration that the failure due to yielding of hanger re-
inforcement happens before the failure due to punching shear 
in the ledge to make sure that the failure is ductile. Figure 4 
presents an elevation and cross sections for the beams.

These 18 beams include the following:

• Seven beams—H1, H2, H3, H4, H5, H6, and H7—with 
inner stirrup legs at distances X

i
 of 60, 120, 180, 240, 300, 

360, and 400 mm (2.4, 4.7, 7.1, 9.4, 12, 14, and 16 in.), 
respectively, from the outer face of the web. Those seven 
beams were analyzed to investigate the contribution of the 
inner stirrup legs to the hanging capacity of ledge beams, 
and the results were compared to control beam H0 without 
inner stirrup legs. The seven beams had a load eccentricity 
e of 350 mm (14 in.) from the web of the beams.

• Six beams—E1, E2, E3, E4, E5, and E6—with load 
eccentricities e of 100, 200, 300, 400, 500, and 600 mm 
(4, 8, 12, 16, 20, and 24 in.), respectively, from the web. 
These beams were analyzed to investigate the effect of 
load eccentricity on the hanging capacity of ledge beams, 
and the results were compared to control beam E0 with a 
load eccentricity e of 350 mm (14 in.) from the web.

• Beams D
1
 and D

2
. D

1
 has inner stirrup legs at a distance 

X
i
 of 60 mm (2.4 in.) from the outer face of the web, and 

D
2
 has diagonal bars. These two beams were analyzed 

to investigate the contribution of diagonal bars to the 
hanging capacity of ledge beams, and the results were 
compared with results for control beam D

0
 without inner 

stirrup legs or diagonal bars.

Table 1. Results of the solved example

Document ECP 207-2015
PCI 8th Edition 

Handbook

AASHTO LRFD 2017

Strength Serviceability

Hanger RFT area, mm2/m 208 467 193 678

Distribution width, mm 1524 1524 1524 552

Total transverse reinforcement (exterior load, one leg) mm2/m 682 467 802 1287

Total transverse reinforcement (interior load, one leg) mm2/m 366 467 459 944

Punching capacity, interior, kN 356.93 250.43 398.92

D/C, interior 1.28 1.1 1.75

Punching capacity, end, kN 510.08 239.31 398.92

D/C, end 0.9 1.83 1.1

Note: C = capacity; D = demand. 1 mm = 0.0394 in.; 1 m = 3.281 ft; 1 kN = 0.225 kip.
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The material properties of the concrete are assumed to be 
as follows: compressive strength ′fc  of 32 MPa (4600 psi), 
Poisson’s ratio v

c
 of 0.2, and modulus of elasticity E

c
 of 

27,828 MPa (4036.0 ksi).

The material properties of the steel are assumed to be as 
follows: yield stress f

y
 of 400 MPa (58 ksi), ultimate stress f

u
 

of 600 MPa (87 ksi), Poisson’s ratio v
s
 of 0.3, and modulus of 

elasticity E
s
 of 200,000 MPa (29,000 ksi).

The punching shear capacities estimated by the plastici-

ty-based nonlinear FEM were compared with the punching 
shear capacities of four short-span ledge beams (RS3-D, RS4, 
RS5-D, and RS7) and six long-span ledge beams (LB1, LB2, 
LB3, LB3-RQ, LB3-LQ, LB4, and LB6) that were experi-
mentally tested by Nafadi.8 Nafadi et al.9–11 has details about 
the geometry, reinforcement, loading mechanism, and materi-
als properties of the beams.

Figure 4. Geometry and design details for the ledge beams. Note: e = load eccentricity; P = concentrated vertical load; Xi = inner 
stirrup leg distance from the outer face of the web. All measurements are in millimeters. 1 mm = 0.0394 in.
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Finite element simulations

Methodology 

In this study, concrete was modeled using an eight-noded 
hexahedral linear brick with reduced integration (one integra-
tion point) and hourglass control. These elements are suitable 
for 3-D materials. Also, this type of element is typically used 
when plasticity and large deformations are expected, such as 
in the case of concrete structures. The linear reduced-integra-
tion option was used throughout the analysis of concrete parts 
in this study. This option is capable of withstanding severe 
distortions, and it reduces the time required for the analysis. 
However, this option also could affect the analysis results; 
therefore, it is important to pay attention to this possibility 
when comparing the analytical results with experimental 
results. The concrete damaged plasticity model was chosen to 
numerically model the behavior of concrete in this study.

Reinforcement was modeled using a 3-D, two-node truss 
element. This element is used to model slender elements that 
only support axial forces without any moments. A material 
property and a cross-sectional area can also be assigned to 
this element.

Concrete damaged plasticity model

The concrete damaged plasticity model developed by Lubliner 
et al.12 is a modification of the Druker-Prager strength hypoth-
esis.13 The failure surface of triaxially loaded concrete is a 
3-D surface. According to Druker-Prager strength hypothesis, 
the failure surface is assumed to take a 3-D cone shape with 

a circular deviatoric cross section (Fig. 5). Any point inside 
this surface is considered as a safe behavior. The yield surface 
and the plastic potential surface are also inside this surface. 
This assumption offers a smooth boundary surface without 
any computational problems, but this behavior is not compat-
ible with the real concrete behavior. Given this drawback in 
Druker-Prager strength hypothesis, Lubliner et al. modified 
the hypothesis and developed the concrete damaged plasticity 
model. The yield surface in the concrete damaged plasticity 
model can be developed according to Eq. (1).

F = 1
1−α

q − 3α p + β ε t
pℓ ,εc

pℓ( ) σ max − γ −σ max
⎡
⎣

⎤
⎦ −σ cεc

pℓ

 (1)

where 

F = yield function

p  = effective hydrostatic pressure

q  = equivalent von Mises stress

α = dimensionless material constant (defined in Eq. [2])

β = dimensionless material constant (defined in Eq. [3])

γ = dimensionless material constant (defined in Eq. ([4])

c
p  = the plastic compressive strain

t
p  = the plastic tensile strain

Figure 5. Druker-Prager boundary surface. Source: Reproduced with permission from Kmiecik and Kamiński (2011). Note: D = 
abbreviation for deviatoric plan; fc = uniaxial compressive stress; fcc = biaxial compressive stress; fm = the mean stress; ft = tensile 
stress; Pw = yield surface in the deviatoric plan; Pz = failure surface in the deviatoric plan; Θ = lode angle; σ1 = major principal 
effective stress; σ2 = intermediate principal effective stress; σ3 = minor principal effective stress; σm = the hydrostatic stress; τoct = 
octahedral shear stress.
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σ c  = the effective compressive stress

σ max  = algebraically maximum eigenvalues of tensor

Macauley bracket function X = 1
2
X + X

 α =

σ bo

σ co

⎛
⎝⎜

⎞
⎠⎟
−1

2
σ bo

σ co

⎛
⎝⎜

⎞
⎠⎟
−1

0 ≤α ≤ 0.5  (2)

where

σ
bo

 = biaxial compressive stress

σ
co

 = uniaxial compressive strength

σ bo

σ co

 = 1.16

  β =
σ cεc

pℓ

σ tε t
pℓ 1−α( )− 1+α( )  (3)

where

σ c  = effective cohesive stresses for compression

σ t  = effective cohesive stresses for tension

           γ =
3 1− Kc( )
2Kc −1

 (4)

where

K
c
 = ratio between the distances of the tension meridian 

and the compression meridian on the hydrostatic 
axis

The coefficient γ appears only for the triaxial compression 
stress state and can be determined by comparing the yield 
conditions along the tensile and compressive meridians. The 
variable K

c
 should be estimated based on a full triaxial test. 

The value of K
c
 ranges from 0.5 to 1. The nonlinear finite 

element software recommends a value of 2⁄3 as a default value 
for K

c
. If K

c
 equals 1, the shape of the yield surface in the 

deviatoric cross section will be a circle, as in Druker-Prager 
hypothesis13 (Fig. 6).

The flow rule is used to connect the yield surface stress and 
the concrete stress-strain relationship. The concrete damaged 
plasticity model used Drucker-Prager hyperbolic function as a 
nonassociated flow potential function according to Eq. (5).

        G = ∈σ to tanφ( )2 + q 2 − p tanφ  (5)

where

G = flow potential function

ϵ = eccentricity that is a positive value expressing the 
rate of approach of the plastic potential hyperbola 
to its asymptote

σ
to
 = the uniaxial tensile strength

ϕ = dilation angle that physically represents the internal 
friction angle of concrete

The nonlinear finite element software gives a value of 0.1 as a 
default value for ϵ, which means that the dilation angle of the 
concrete is constant along a wide range of confining pressure. 
The dilation angle ϕ represents the angle of inclination of the 
yield surface in the meridional plane. The value of the dilation 
angle of concrete ranges from 30 to 42 degrees. In this study, 
a sensitivity analysis was performed and a value of 34 degrees 
for this angle was chosen.

Damage is also introduced in the model through the damage 
parameter d according to Eq. (6).

  σ = 1− d( )σ =
Eo

ε − ε pℓ( )  (6)

where 

σ = uniaxial compressive stress

 = effective compressive stress

E
o
 = initial undamaged elastic modulus of concrete

ε = total strain

Figure 6. Yield surfaces in the deviatoric plane, corresponding 
to different values of Kc. Note: Kc = ratio between the distanc-
es of the tension meridian and the compression meridian on 
the hydrostatic axis; S1 = major principal effective stress; S2 
= intermediate principal effective stress; S3 = minor principal 
effective stress.



31PCI Journal  | May–June 2025

ε
pl

 = plastic strain of concrete

Material models

Concrete uniaxial compression model The literature 
provides several models to describe the behavior of concrete 
under uniaxial compression, and three of them were con-
sidered for this study: the Eurocode model,14 the Hognestad 
model,15 and the Carreira and Chu model.16 Based on a sensi-
tivity study, the Hognestad model was chosen for this study. 
The Hognestad model for uniaxial compression behavior of 
concrete consists of three stages (Fig. 7). The first stage rep-
resents the linear elastic behavior of concrete with an initial 
modulus of elasticity E

o
 equal to 5500 fc , and this stage 

continues to a uniaxial compressive stress σ
co

 equal to 0.4 ′fc
, which is the same level stated in the Eurocode model. This 
stage is followed by the second stage, which represents the 
ascending branch and continues until the maximum stress of 
concrete ′fc , which corresponds to a strain ε

o
 corresponding to 

the peak stress and equal to 2 ′fc / Esec with a secant modulus 
of elasticity E

sec
 equal to 5000 fc . Finally, there is the third 

stage, which represents the descending or the post-peak 
branch from the peak stress ′fc  to the ultimate strain ε

u
, which 

equals 0.0038. Eq. (7) gives the relation between the concrete 
stress σ

c
 and strain ε

c
 for the Hognestad model.

  σ c = ′fc 2
εc
εo

⎛

⎝⎜
⎞

⎠⎟
−

εc
εo

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (7)

Concrete uniaxial tension model The literature has 
several models to describe the behavior of concrete under 
uniaxial tension, and three of them were considered for this 
study:

• the modified Nayal and Rasheed model17

• the modified Wang and Hsu model18

• the Carreira and Chu model19

Based on a sensitivity study, the modified Wang and Hsu 
model was chosen for this study. That model takes into 
consideration interlocking aggregates; the adhesive force 
between the reinforcement and the concrete; the stress 
transferred from the reinforcement to the uncracked con-
crete, which makes the concrete between cracks contribute 
to the tensile strength; and the dowel action. Therefore, the 
proposed weakening branch is a curve not a line. The pro-
posed model is defined by Eq. (8) for the linear part until the 
maximum tensile stress and by Eq. (9), which represents the 
weakening function.

         σ
t
 = E

t
ε

t 
 if ε

t
 ≤ ε

cr
 (8)

where 

σ
t
 = tension stress

E
t
 = modulus of elasticity of concrete in tension

ε
t
 = tension strain

ε
cr
 = cracking strain

     σ t = ft
εcr
ε t

⎛

⎝⎜
⎞

⎠⎟

n

if ε t > εcr  (9)

where 

f
t
 = tensile stress

n = rate of weakening = 0.5 based on a sensitivity study

Reinforcement model There are two hypotheses for mod-
eling reinforcement behavior in tension.20 The first considers 
reinforcement as an elastic-perfectly plastic material. In this 
model, the reinforcement behaves as an elastic material until 
the yield point is reached, and then it behaves as a perfectly 
plastic material without strain hardening (Fig. 8). The second 
model is the backbone model (Fig. 9). This model represents 
the tension behavior of reinforcement through four stages. The 
first stage is the linear elastic stage, which ends at the yielding 
point. The second stage is a yielding plateau, which continues 
until the strain hardening point. The third stage starts at the 
strain hardening point and continues to the ultimate point. The 
final stage represents the post-ultimate-plateau phase; it starts 
from the ultimate point and continues until failure. The elastic/
perfectly plastic model was selected for this study based on a 
sensitivity study.

Interaction between model elements

The interaction between reinforcement and concrete is modeled 
using the embedded constraint. The concrete acts as a host 

Figure 7. Hognestad model for uniaxial compression behavior 
of concrete. Source: Reproduced with permission from Geni-
komsou and Polak (2015). Note: Eo = initial undamaged elastic 
modulus of concrete; Esec = secant modulus of elasticity;  
f
c
 = compressive strength of concrete; ε = total strain;  

εo = the strain corresponding to the max compressive stress; 
εu = ultimate strain; σco = uniaxial compressive strength;  
σc = concrete stress.
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region, and the reinforcement acts as an embedded region. This 
means that the nodes of the reinforcement do completely obey 
the translations and the rotations of the concrete element nodes, 
thereby, representing a perfect bond between them without any 
slippage. But this manner isn’t accurate. However, the concrete 
damaged plasticity model can capture the damage between the 
reinforcement and the concrete. The interaction between the 
concrete and any loading or support plate is modeled using 

the tie constraint, the plates act as master surfaces, and the 
concrete acts as a slave surface. The interaction between the 
concrete and any reference point is modeled using the coupling 
constraint, the concrete acts as the constraint surface, and the 
reference point acts as the control point.

Finite element model validation

Experimental data for three ledge beams—SL3-42-1.85-06, 
A1, and SS1-75-1.85-03—were collected from the litera-
ture. Fernandez-Gomez1 provides details of the geometry 
and reinforcement of SL3-42-1.85-06 and SS1-75-1.85-03. 
El Badawy21 provides information on beam A1. The beams 
were modeled using nonlinear finite element software, with 
the materials models and parameters discussed previously. 
The analytical and experimental results were then compared 
to ensure that the proposed materials models were capable 
of accurately capturing the behavior of ledge beams as a first 
step toward using these models in this study. Figures 10, 11, 
and 12 compare the analytical and experimental results in 
terms of a load-deflection relationship. The results indicate 
good correlation between the experimental and the analytical 
results. The analytical results showed stiffer behavior than the 
experimental results. Initial cracking due to shrinkage and the 
accuracy of the representation of tension stiffening could be 
reasons for the deviation.

Investigation of hanging action  
of ledge beams

The 18 theoretical reinforced concrete ledge beams were 
analyzed using nonlinear finite element software (Fig. 13). 
The failure criterion that was used in the analysis is designed 
to take into consideration the integration and stability of the 
beam until the failure. Hanger reinforcement can yield and 
reach a yielding plateau without fracture, but the crack width 
between the web and the ledge increases excessively, which in 

Figure 8. Elastic/perfectly plastic model for tension behavior 
of reinforcement. Note: Es = modulus of elasticity of steel;  
fy = yield stress of steel.

Figure 9. Backbone model for tension behavior of reinforce-
ment. Note: Es = modulus of elasticity of steel; Esh = modulus 
of plasticity of steel reinforcing bars in strain hardening stage; 
fsu = max stress; fy = yield stress of steel; εsh = strain in steel 
reinforcement in strain hardening stage; εsu = strain in steel 
reinforcement corresponding to the peak stress.

Figure 10. Load deflection curves for beam SL3-42-1.85-06. 
Note: 1 mm = 0.0394 in.; 1 kN = 0.225 kip.
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turn affects the integration and stability of the beam and may 
lead to corrosion of the reinforcement. Therefore, to ensure 
that the beam would remain stable and integrated, the stress 
in the hanger reinforcement was checked to be less than the 
fracture strength, and the crack width at the web-to-ledge 
junction was checked to be within a limited value. The crack 
width at the web-to-ledge junction can be calculated using the 
strains in the hanger reinforcement H and the ledge flexural 
reinforcement F according to Eq. (10) and (11) for interior 
and exterior loads, respectively.22

     W = L
HF

ε
HF

 ≤ 0.812 mm (10)

where

W = crack width at the web-to-ledge junction

L
HF

 = compatibility-aided strut-and-tie model gauge 
length = (9500ε

HF
 – 3 in.)

ε
HF

 = diagonal crack strain = εH
2 + ε F

2  (Fig. 14)

ε
H
 = strain in the hanger reinforcement

ε
F
 = strain in the ledge flexural reinforcement

  W =
2.6LHFεHF
1+ 0.7LE( ) ≤ 0.203  (11)

where

L
E
 = distance from the beam end and the center of the 

first exterior load

The allowable values for the crack width at the web-to-ledge 
junction are 0.812 and 0.203 mm (0.0320 and 0.00799 in.) for 
the interior and the exterior loads, respectively. These values 
are selected according to the American Concrete Institute’s 

Figure 11. Load deflection curves for beam A1. Note: 1 mm = 
0.0394 in.; 1 kN = 0.225 kip.
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Figure 12. Load deflection curves for beam SS1-75-1.85-03. 
Note: 1 mm = 0.0394 in.; 1 kN = 0.225 kip.
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Figure 13. Nonlinear finite element software model of a ledge 
beam.

Figure 14. Crack strains. Note: F = ledge flexural reinforcement; 
H = hanger reinforcement; P = axial load; εF = strain in the 
ledge flexural reinforcement; εH = strain in the hanger reinforce-
ment; εHF = diagonal crack strain.



34 PCI Journal  | May–June 2025

Control of Cracking in Concrete Structures (ACI PRC- 224R-
01)23 after incorporating the scaling ratio S. The scaling ratio 
S accounts for the change in size between the tested beam and 
the beam under consideration, which will affect the gauge 
length. It is calculated according to Eq. (12)22 and equals 1.98 
for the ledge beams used in this study.

S =
de − c − 0.5db( )p a f( )

p
ASH( )p

de − c − 0.5db( )T a f( )
T
ASH( )T

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1/4

 (12)

where

d
e
 = effective depth of the ledge, which is taken as the 

distance from the bottom of the ledge to the center 
of the top flexural reinforcing bars in the ledge

c = concrete cover

d
b
 = diameter of the bottom reinforcing bars in the ledge

a
f
 = distance from the load center line to the hanger 

reinforcement

A
SH

 = area of one of the reinforcing bar used as hanger 
reinforcement

p = proposed beam under consideration

T = tested beam

Punching shear of ledges

Nonlinear finite element software was used to analyze the 
10 ledge beams that were experimentally tested by Nafadi8 
(Fig. 15). The failure criteria used for these 10 beams consid-

er the punching shear failure in ledges under the concentrated 
loads to take place when the maximum principal compressive 
strain in the punching cone under this load reaches a value of 
0.002 (Fig. 16). These criteria are used by many researchers 
in the literature.8,15,24

Results

Hanging action

Comparison of code and specifications

Table 2 compares the finite element estimates for the hanging 
capacities of ledge beams H0 (control), H1, H2, H3, H4, H5, H6, 
H7, E0 (control), E1, E2, E3, E4, E5, and E6, with the hanging 
capacity results calculated in accordance with provisions from 
the ECP 207-2015, the AASHTO LRFD specifications, and the 
PCI Design Handbook. Calculations based on ECP 207-2015 
and AASHTO LRFD specifications overestimated the hanging 
capacities of the investigated ledge beams because the equations 
neglect the load eccentricity effect on the hanging capacity. In 
contrast, calculations based on the PCI Design Handbook under-
estimated the hanging capacity of the investigated ledge beams 
as the equation considers the load eccentricity effect but does not 
consider the contribution of the inner legs. Based on these find-
ings, it is recommended to use the equation from the PCI Design 
Handbook to design the required hanger reinforcement.

Contribution of inner stirrup legs Figure 17 shows the 
finite element estimates of the hanging capacity of the beams 
analyzed to investigate the contribution of the inner legs to the 
hanging capacity of ledge beams. The results demonstrate that 
using inner legs as hanger reinforcement increased the hanging 
capacity of the analyzed beams with varied ratios depending 
on the location of the inner legs relative to the outer face of the 
web X

i
 or depending on X

i
/b, where b is the width of the web. 

Figure 15. Nonlinear finite element software model of a short-
span beam.

Figure 16. The principal compressive strain at a punching fail-
ure. Source: Reproduced with permission from Hassan (2007). 
Note: 1 kN = 0.225 kip.
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The hanging capacity is increased by 12%, 10.66%, 9.33%, 8%, 
6.67%, 5.33%, and 4% for X

i
/b of 6%, 12%, 18%, 24%, 30%, 

36%, and 42%, respectively. Figure 18 shows the stress in the 
inner stirrup legs depending on the X

i
/b as a ratio from the yield 

strength. As the X
i
/b increases, the stress in the reinforcement of 

these legs decreases. It is recommended to arrange the inner legs 
that are intended to contribute to increasing the hanging capacity 
of ledge beams at the smallest X

i
/b possible to make the best use 

of these legs to increase the hanging capacity of these beams. 
Consequently, it is recommended to consider the maximum X

i
/b 

to be in the range of 30% to 40% but not more than 40%.

Load eccentricity effect Figure 19 presents the finite 
element estimates of the hanging capacities of the beams ana-
lyzed to investigate the load eccentricity effect on the hanging 
capacity of ledge beams. The results emphasize that the effect 

Table 2. Comparison among codes

Beam
ECP and AASHTO 

failure load, kN
PCI failure  
load, kN

FEM failure  
load, kN

ECP and  
AASHTO/FEM

PCI/FEM

H0 1538.248 1296.4 1394.73 1.102 0.929

H1 1538.248 1296.4 1562.09 0.984 0.829

H2 1538.248 1296.4 1543.41 0.996 0.84

H3 1538.248 1296.4 1524.8 1.008 0.85

H4 1538.248 1296.4 1506.24 1.021 0.86

H5 1538.248 1296.4 1487.56 1.034 0.871

H6 1538.248 1296.4 1468.85 1.047 0.882

H7 1538.248 1296.4 1450.16 1.06 0.894

E0 1538.248 1296.4 1394.7 1.102 0.929

E1 1538.248 1661 1532.6 1.003 1.083

E2 1538.248 1493.1 1497.7 1.027 0.996

E3 1538.248 1356 1431.9 1.074 0.947

E4 1538.248 1241.9 1381.1 1.113 0.899

E5 1538.248 1145.6 1299.7 1.183 0.881

E6 1538.248 1063.1 1217.5 1.263 0.873

Note: AASHTO = AASHTO LRFD specifications; ECP = ECP 207-2015; FEM = finite element model; PCI = PCI Design Manual. 1 kN = 0.225 kip.

Figure 17. Inner stirrup legs’ contribution to the hanging ca-
pacity of ledge beams. Note: 1 kN = 0.225 kip.
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of the load eccentricity e is major and cannot be neglected. 
The hanging capacity of the analyzed beams decreases as the 
load eccentricity increases. The hanging capacity is reduced 
by up to 26.344%; therefore, it is recommended that codes 
and specifications take the load eccentricity effect into consid-
eration in design equations.

Diagonal bars effect Figures 20 and 21 show the finite 
element estimates of the hanging capacity of the beams analyzed 
to investigate the effect of diagonal bars on the hanging capac-
ity of ledge beams in terms of the failure load and the cracking 
load, respectively. The results indicate that in the beams using 
diagonal bars, the failure load and the cracking load were 
increased by 7.51% and 18.27%, respectively, compared with 
the control beam. The failure load and the cracking load were 
increased 12% and 9.64%, respectively, for the beam with inner 
legs at 60 mm (2.4 in.) from the outer face of the web. The effect 
of the diagonal bars on the cracking load is more pronounced.

Figure 22 presents the failure loads for the beam with di-
agonal bars and the beams with inner legs at different X

i
/b. 

For X
i
/b equal to or less than 24%, using inner legs is more 

effective than using diagonal bars to increase the failure 

load. However, for X
i
/b greater than 24%, diagonal bars are 

more effective than inner legs to increase the failure load. 
This finding can be attributed to the fact that the inner legs 
make a large contribution to the hanging capacity at a small 
X

i
/b and this contribution gradually lessens as X

i
/b increas-

es. Therefore, it is recommended that inner legs be used for 
beams with an X

i
/b ratio equal to or less than 24% and diago-

nal bars be used for beams with X
i
/b greater than 24%.

Punching shear

Estimates from code and specifications

Equations from the PCI Design Handbook, the ECP 207-
2015, and the AASHTO LRFD specifications were used to 
estimate the punching shear capacities of the 10 ledge beams 
that were experimentally tested by Nafadi.8 The results of 
those calculations were then compared with the experimental 
results to investigate the conservativeness of the published 
equation.

Figure 23 shows that calculations for short-span ledge beams 
based on the AASHTO LRFD specifications were unconser-

Figure 19. Load eccentricity effect. Note: 1 kN = 0.225 kip.

1532.6
1497.7

1431.9
1394.7 1381.1

1299.7

1217.5

1000

1100

1200

1300

1400

1500

1600

E1 E2 E3 E4 E5 E6 E7

Fa
ilu

re
 lo

ad
 k

N

Figure 21. The increase in cracking loads of beams D1 and D2.
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Figure 20. The increase in failure loads of beams D1 and D2.
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Figure 22. Diagonal bars compared with inner stirrups.
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vative and overestimated the punching shear capacity of the 
ledges at midspan compared with the experimental results. 
On the other hand, calculations based on the PCI Design 
Handbook and ECP 207-2015 were conservative but under-
estimated the punching shear capacity at midspan compared 
with the experimental results.

Figure 24 shows that calculations for short-span ledge beams 
based on the AASHTO LRFD specifications were unconserva-
tive and overestimated the punching shear capacity of the ledges 
at ends compared with the experimental results. Calculations 
for the punching shear capacity at the ends of short-span ledge 
beams based on ECP 207-2015 were conservative for all but one 
test, and the PCI Design Handbook provided conservative and 
accurate estimates of the punching shear capacity at the short-
span beam ends compared with the experimental results.

Figure 25 shows that calculations for long-span ledge beams 

based on the AASHTO LRFD specifications were uncon-
servative and overestimated the punching shear capacity 
of the ledges at midspan compared with the experimental 
results, especially when they are exposed to high or moderate 
global stress. Calculations for the punching shear capacity 
at midspan of the long-span beams based on the PCI Design 
Handbook and the ECP 207-2015 were conservative com-
pared with the experimental results. Results derived from the 
PCI Design Handbook underestimated the punching shear 
capacity at midspan, with the results being about half the ex-
perimental results. Therefore, the estimates derived from the 
PCI Design Handbook at midspan of long-span ledge beams 
can be considered conservative, but the equations need to be 
developed to give more accurate results. On the other hand, 
the ECP 207-2015 gave conservative and accurate estimates 
of the punching shear capacity at midspan.

Figure 26 shows that calculations for long-span ledge beams 

Figure 23. Load capacity at the midspans of short-span ledge 
beams comparison of experimental results and estimates 
derived from the PCI Design Handbook, ECP 207-2015, and 
AASHTO LRFD specifications. Note: 1 kN = 0.225 kip.
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Figure 25. Load capacity at the midspans of long-span ledge 
beams comparison of experimental results and estimates 
derived from the PCI Design Handbook, ECP 207-2015, and 
AASHTO LRFD specifications. Note: 1 kN = 0.225 kip.
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Figure 24. Load capacity at the ends of short-span ledge 
beams comparison of experimental results and estimates 
derived from the PCI Design Handbook, ECP 207-2015, and 
AASHTO LRFD specifications. Note: 1 kN = 0.225 kip.
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Figure 26. Load capacity at the quarter spans of long-span 
ledge beams comparison of experimental results and esti-
mates derived from the PCI Design Handbook, ECP 207-2015, 
and AASHTO LRFD specifications. Note: 1 kN = 0.225 kip.
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based on the AASHTO LRFD specifications were unconser-
vative and overestimated the punching shear capacity of the 
ledges at quarter span compared with the experimental results. 
Results for the punching shear capacity at quarter span of 
long-span ledge beams based on the PCI Design Handbook 
and the ECP 207-2015 were conservative compared with the 
experimental results, except in one test. Because there was 
an outlier, the equations of the PCI Design Handbook and 
the ECP 207-2015 at quarter span of long-span ledge beams 
may need to be further investigated to confirm the otherwise 
conservative results.

Figure 27 shows that calculations for long-span ledge beams 
based on the AASHTO LRFD specifications and the ECP 
207-2015 were unconservative and overestimated the punch-
ing shear capacity of the ledges at the ends compared with the 
experimental results. In contrast, calculations for the punching 
shear capacity at the ends of long-span ledge beams based 

on the PCI Design Handbook were conservative compared 
with the experimental results for all tests. Therefore, the PCI 
Design Handbook methods for estimating punching shear ca-
pacity at the ends of long-span ledge beams can be considered 
conservative and accurate.

Finite element estimates

Nonlinear finite element software was used to model and 
analyze the 10 ledge beams that were experimentally tested 
by Nafadi.8 Figures 28 through 32 compare the finite 
element estimates for the punching shear capacity of these 
beams with the experimental results. The results indicate 
good correlation between the finite element estimates and 
the experimental results.

Figure 27. Load capacity at the ends of long-span ledge 
beams comparison of experimental results and estimates 
derived from the PCI Design Handbook, ECP 207-2015, and 
AASHTO LRFD specifications. Note: 1 kN = 0.225 kip.
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Figure 29. Ledge capacity of short-span ledge beams at ends 
comparison between the finite element model estimates and 
experimental results. Note: 1 kN = 0.225 kip.
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Figure 28. Ledge capacity of short-span ledge beams at mid-
span comparison between the finite element model estimates 
and experimental results. Note: 1 kN = 0.225 kip.
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Figure 30. Ledge capacity of long-span ledge beams at mid-
span comparison between the finite element model estimates 
and experimental results. Note: 1 kN = 0.225 kip.
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Conclusion

This paper presents a theoretical investigation of the behavior 
of ledge beams by using the finite element theory to estimate 
the nonlinear behavior of reinforced concrete in all loading 
stages. Three main variables investigated in this study were 
the effective thickness of the outer part of the web near the 
concentrated load where vertical hangers can effectively 
be placed, the contribution of diagonal bars to the hanging 
capacity of ledge beams, and the effect of the load eccen-
tricity on the hanging capacity of ledge beams. A plastici-
ty-based nonlinear finite element model was used to analyze 
the punching behavior of ledge beams. Several experimental 
results were collected from the literature to support the results 
derived from the model. The study also compared provisions 
from selected codes and specifications to estimate the hanging 
capacity of ledge beams and the punching shear capacity of 
ledges. Last, the paper presents a proposal for the effective 
thickness of the outer part of the web near the concentrated 
load where vertical hangers can be effectively placed.

Based on the nonlinear finite element analysis performed in 
this research and the calculated estimates for the hanging 
capacity and the punching shear capacity of the investigated 
ledge beams, the following conclusions were drawn:

• The ECP 207-2015 and the AASHTO LRFD speci-
fications overestimate the hanging capacity of ledge 
beams. The PCI Design Handbook, on the other hand, 
underestimates the hanging capacity because it does not 
consider the contribution of the inner stirrups’ legs.

• Using the inner stirrups’ legs as hanger reinforcement 
increased the hanging capacity of ledge beams depending 
on X

i
/b. The hanging capacity is increased by decreasing 

the X
i
/b. This finding is attributed to the fact that as the 

inner stirrups get closer to the outer one, their contribu-
tion to the hanging capacity becomes more noticeable. An 
inner stirrup located at X

i
/b of about 20% could provide 

an increase of about 10% to the hanging capacity.

• The load eccentricity has a pronounced effect on the 
hanging capacity of ledge beams. The hanging capacity 
of the analyzed beams decreased as the load eccentricity 
increased. For a load eccentricity of about 85% of the 
width of the ledge, the hanging capacity decreased by 
about 25% compared with the control beam.

• Calculations based on the ECP 207-2015 and the 
AASHTO LRFD specifications demonstrate that codes 
of practice that neglect the effect of the load eccentricity 
may overestimate the hanging capacity and their ap-
plication could lead to unconservative design. The PCI 
Design Handbook accounts for the effect of the load ec-
centricity and results in conservative design. Therefore, 
it is recommended that codes and specifications include 
the load eccentricity effect in design equations.

• The use of diagonal bars increases both the cracking 
load and the failure load compared with the control 
beam. In this investigation, the use of diagonal bars 
increased the cracking and the failure loads by about 
18.5% and 7.5%, respectively. The use of diagonal bars 
has a more pronounced effect on the cracking load.

• The hanging capacity of ledge beams can be increased 
either by using inner stirrups or diagonal bars. For the 
cases investigated in this study, the inner stirrups could 
be a more efficient choice when the X

i
/b is less than 

about 25%.

• For the cases investigated in this study, there were 
good correlations between the nonlinear finite element 
estimates and the experimental results for the punching 
shear capacity of ledges.

• The equations proposed in the ECP 207-2015 to esti-
mate the punching perimeter for interior and exterior 
loads, which are similar to those given in the AASHTO 

Figure 31. Ledge capacity of long-span ledge beams at 
quarter span comparison between the finite element model 
estimates and experimental results. Note: 1 kN = 0.225 kip.
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Figure 32. Ledge capacity of long-span ledge beams at ends 
comparison between the finite element model estimates and 
experimental results. Note: 1 kN = 0.225 kip.
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LRFD specifications, should be revised and corrected to 
eliminate what could be a typing error.

• The ECP 207-2015 and the AASHTO LRFD specifi-
cations do not account for the interaction of flexure, 
one-way shear, and punching shear. They also do not take 
into consideration the effect of prestressing, if there is 
one. Those interactions are taken into consideration in the 
PCI Design Handbook. Moreover, the AASHTO LRFD 
specifications do not account for the effect of the load 
eccentricity on the punching shear capacity of ledges.

• The AASHTO LRFD specifications overestimated the 
punching shear capacity of the ledges of the short-span 
ledge beams compared with the experimental results. In 
contrast, results based on the PCI Design Handbook and 
the ECP 207-2015 were conservative.

• The AASHTO LRFD specifications overestimated the 
punching shear capacity of the ledges at midspan and 
quarter span of the long-span ledge beams compared 
with the experimental results. Estimates derived from 
PCI Design Handbook and the ECP 207-2015, on the 
other hand, were conservative.

• The AASHTO LRFD specifications and the ECP 207-
2015 overestimated the punching shear capacity of the 
ledges at the ends of the long-span ledge beams com-
pared with the experimental results, whereas estimates 
from the PCI Design Handbook were conservative.

• Among the investigated references and codes of practice, 
the PCI Design Handbook provided the most reliable 
estimates of hanging capacity, though those results may 
be overly conservative unless consideration is given to the 
inner leg of the stirrup. Moreover, the PCI estimates of 
punching shear capacities may be unduly conservative.
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Notation

a
f
 = distance between the load center line and the hanger 

reinforcement

A
SH

 = area of one of the reinforcing bars used as hanger 
reinforcement

b = width of the web

c = concrete cover

C = distance between the center line of the exterior load 
and the edge of the ledge

d = damage parameter

d
b
 = diameter of the bottom reinforcing bars in the ledge

d
e
 = effective depth of the ledge (distance from the 

bottom of the ledge to the center of the top flexural 
reinforcing bars in the ledge)

D = abbreviation for deviatoric plan

e = load eccentricity

E
c
 = modulus of elasticity of concrete

E
o
 = initial undamaged elastic modulus of concrete

E
s
 = modulus of elasticity of steel

E
sec

 = secant modulus of elasticity

E
sh

 = modulus of elasticity of steel at strain hardening or 
the plastic modulus of elasticity of steel

E
t
 = modulus of elasticity of concrete in tension

f
c
 = uniaxial compressive stress

 = compressive strength of concrete

f
cc

 = biaxial compressive stress

f
i
 = tension stress

f
m
 = mean stress

f
su

 = ultimate tensile strength of steel reinforcing  
bars

f
t
 = tensile stress

f
u
 = ultimate stress of steel

f
y
 = yield stress of steel

F = strain in the ledge flexural reinforcement

G = flow potential function

H = strain in the hanger reinforcement

K
c
 = ratio between the distances of the tension meridian 

and the compression meridian on the hydrostatic axis

′fc
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L
E
 = distance from the beam end and the center of the 

first exterior load

L
HF

 = compatibility-aided strut-and-tie model gauge 
length

n = rate of weakening

p = proposed beam under consideration

p  = effective hydrostatic pressure

P = axial load

P
w
 = yield surface in the deviatoric plan

P
z
 = failure surface in the deviatoric plan

q  = equivalent von Mises stress

S = scaling ratio

S
1
 = major principal effective stress

S
2
 = intermediate principal effective stress

S
3
 = minor principal effective stress

T = tested beam

v
c
 = Poisson’s ratio for concrete

W = crack width at the web-to-ledge junction

X
i
 = inner stirrup leg distance from the outer face of the 

web

α = dimensionless material constant

β = dimensionless material constant

γ = dimensionless material constant

ε = total strain

ε
c
 = concrete strain

ε
cr
 = cracking strain

ε
F
 = strain in the ledge flexural reinforcement

ε
H
 = strain in the hanger reinforcement

ε
HF

 = crack width strain 

ε
o
 = strain corresponding to the peak stress

ε
pl

 = plastic strain of concrete

c
p  = plastic compressive strain in concrete

t
p  = plastic tensile strain in concrete

ε
sh

 = strain in steel reinforcement at the strain hardening 
stage

ε
su

 = strain in steel reinforcement corresponding to the 
peak strength

ε
t
 = tension strain

ε
u
 = ultimate strain

Θ = lode angle

σ = abbreviation for stress

 = effective stress

σ
1
 = major effective principal stress

σ
2
 = intermediate effective principal stress

σ
3
 = minor effective principal stress

σ
bo

 = biaxial compressive strength

σ
c
 = concrete stress

σ c  = effective compressive stress

σ
co

 = uniaxial compressive strength

σ
m
 = hydrostatic stress

σ max  = algebraically maximum eigenvalues of tensor

σ
t
 = tension stress

σ
to
 = uniaxial tensile strength

τ
oct

 = octahedral shear stress

ϕ = dilation angle that physically represents the internal 
friction angle of concrete

ε = eccentricity that is a positive value expressing the 
rate of approach of the plastic potential hyperbola 
to its asymptote
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Abstract

This paper presents a theoretical investigation of the 
behavior of reinforced concrete ledge beams that used 
finite element theory to model the nonlinear behav-
ior of reinforced concrete in all loading stages. The 
three main parameters were the effective thickness of 
the outer part of the web near the concentrated load 
where vertical hangers can effectively be placed; the 
contribution of diagonal bars to the hanging capacity 
of ledge beams; and the effect of the load eccentricity 
on the hanging capacity of ledge beams. The punch-
ing shear behavior of ledge beams was also analyzed 
using a plasticity-based nonlinear finite element model. 
Several experimental results were collected from the 
literature to support the finite element results. The 
paper also compares estimates of the hanging capacity 
of ledge beams and the punching shear capacity of 
ledges derived from the Egyptian Code of Practice for 
Planning, Design, and Construction of Bridges and 
Elevated Intersections, the American Association of 
State Highway and Transportation Officials’ AASHTO 
LRFD Bridge Design Specifications, and the PCI 
Design Handbook: Precast and Prestressed Concrete. 
Last, the paper presents a proposal for the effective 
thickness of the outer part of the web near the concen-
trated load where vertical hangers can be effectively 
placed.

Keywords

Hanger reinforcement, ledge beams, nonlinear finite 
element analysis, punching shear, reinforced concrete.
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